Males with CAH – specific focus on fertility

2016 Congenital Adrenal Hyperplasia Patient & Family Summit

November 12, 2016

Todd D. Nebesio, M.D., FAAP Associate Professor of Clinical Pediatrics

Reproductive problems in CAH

- Increased risk of reduced fertility and reproductive problems in women and men
- Females
 - #1 reason is suboptimal control of CAH
 - Often reversible but depends on exact reason
- Males
 - #1 reason is testicular adrenal rest tumors
 - Potentially reversible if detected early

TARTs in males with CAH

- Testicular adrenal rest tumors = TARTs
- First reported in 1940

 Morphologically and functionally resemble adrenal gland tissue
- Not malignant but they can cause testicular damage and lead to fertility problems

TARTs resemble adrenal tissue

- Adrenal glands develop close to the testicles
 - Some cells destined to become adrenal gland cells may nestle within part of the testicles
 - Up to 15% of healthy newborn males can have adrenal rest cells
- **↑** ACTH levels cause adrenal rest cells to grow
 - Most commonly seen in males with poor CAH control
 - TARTs can also occur in adequately controlled males and they do not always occur in those with poor biochemical control

Hypothalamic-Pituitary-Adrenal Axis

TARTs in CAH

- Prevalence: 0% to 94% increases with age
 - Most commonly seen in adolescent and adults with salt-wasting CAH
- Bilateral in more than 80% of cases
 Usually cannot feel (unless > 2 cm)

- Discovered in < 8 week olds at autopsy
- Ultrasound studies
 - 21% to 24% of pre-pubertal males
 - Detected as young as 6 to 7 years old

TARTs and reduced fertility

- Majority of adolescent and adult males with CAH have one or more tumors
 - Most are only detected by ultrasound or MRI
- In adult males with TARTs, most (but not all) have evidence of primary testicular dysfunction and infertility
 - Reduced number of viable sperm
 - Poor semen quality
 - Decreased inhibin B levels

At 11 years old: Bilateral TARTs

As a comparison, here is a normal testicular ultrasound:

At 15 years old: Bilateral TARTs

Stage 1

Adrenal rest cells present within the rete testis

Seminiferous tubules Rete testis Adrenal rest cells

Stage 4

Induction of fibrosis and focal lymphocytic infiltrates

Stage 2

Hyperplasia and hypertrophy of adrenal rest cells

Stage 3

Further growth of the adrenal rest cells with compression of the rete testis

Stage 5

Irreversible damage of testicular parenchyma

Claahsen-van der Grinten HL et al. Best Pract Res Clin Endocrinol Metab, 2009

5 stage classification of TARTs

	Histological description	Reversibility	Treatment options
Stage 1	Presence of adrenal rests within the rete testis—not detectable	+++	_
Stage 2	Hypertrophy and hyperplasia of adrenal rest cells due to growth stimulating factors (e.g., ACTH, AII)	+++	Optimizing glucocorticoids
Stage 3	Further growth of the adrenal rest cells with (reversible) compression of the rete testis	++	Optimizing glucocorticoids Surgery?
Stage 4	Induction of fibrosis and focal lymphocytic infiltrates	-/+	Surgery?
Stage 5	Irreversible damage of testicular parenchyma.	_	_
	Parts of the tumour are replaced by adipose tissue		

Claahsen-van der Grinten HL et al. Int J Pediatr Endocrinol, 2009

Treatment of TARTs

- **1)** Intensifying glucocorticoid regimen in an attempt to improve biochemical control of CAH
 - Increasing the glucocorticoid dose
 - Changing to a longer-acting glucocorticoid
 - Compliance with mineralocorticoid medication may also be beneficial
 - May not improve fertility if TARTs are advanced and at a later stage
- **2) Testis-sparing surgery** (and/or testicular biopsy)
 - Unsure if it prevents further testicular damage often the damage is permanent and irreversible

Surveillance guidelines

 Clinical practice guidelines from the Endocrine Society:

> **"We suggest that males with classic CAH be periodically screened from adolescence for testicular adrenal rest tumors by ultrasound"**

> > Speiser PW et al. J Clin Endocrinol Metab, 2010

- How often should screening be done?
- Why not screen in childhood?
- Is surgery a reasonable optional?

What about non-classic CAH?

- Seems to be a lower risk of fertility problems compared to men with classic CAH
- Not well studied
- There are reports of TARTs occurring in males with non-classic CAH

Other causes of reproductive problems in males with CAH

- Primary testicular failure (TARTs)
- Suppression of the hypothalamic-pituitarygonadal axis due to high levels of adrenal sex steroids
- Obesity and increased body mass index (BMI)

Overtreatment with glucocorticoids

- Fertility in men (as well as women) with CAH is reduced
- The major cause of decreased fertility in men with CAH is due to TARTs
- Early detection of TARTs and improved compliance may help to reduce the risk of infertility in males with CAH